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1. Introduction and summary

By now there is a reasonably good understanding of the spectrum of 1/4 BPS dyons in

a class of N = 4 supersymmetric string theories in four dimensons [1 – 9]. These include

heterotic string theory on a torus as well as a class of CHL models [10 – 15] obtained by ZZN

orbifolding of toroidally compactified heterotic string theory. Dual description of these the-

ories involve type IIA string theory compactified on K3×T 2 and appropriate ZZN orbifolds

of this theory. In each example studied so far, the statistical entropy computed by taking

the logarithm of the degeneracy of states agrees with the entropy of the corresponding

black hole for large charges, not only in the leading order but also in the first non-leading

order [2, 6, 9]. On the black hole side this requires inclusion of four derivative terms in the

effective action, and use of Wald’s generalized formula for the black hole entropy in the

presence of higher derivative corrections [16 – 19].

In this paper we extend this analysis to yet another N = 4 supersymmetric string

theory, obtained by taking a freely acting ZZ2 orbifold of type IIA string theory compact-

ified on a six torus T 6. The orbifold group involves reflection of four coordinates of the

torus together with half unit of shift along a fifth direction on the torus. There is a dual

description of this model, also as an orbifold of type IIA string theory on T 6, but now the

orbifold group involves half unit of shift along one coordinate of the torus together with

a (−1)FL transformation where FL is the contribution to the space-time fermion number
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from the left-moving sector of the string world-sheet [20]. Although in many respects this

model has very similar properties to the N = 4 supersymmetric heterotic string compact-

ification studied earlier, there is one important difference. Unlike in the N = 4 theories

coming from heterotic string compactification, in the present model the entropy of a small

black hole representing an elementary string state fails to reproduce the statistical entropy

associated with elementary string states [21, 22]. This makes it important to test if the

statistical entropy of dyons agrees with the black hole entropy.

We follow the procedure of [9] to compute the degeneracy of a class of dyons in this

theory. The result may be summarized as follows. Let us denote by Qe and Qm the electric

and magnetic charge vectors of a state in the second description of the theory where the

orbifold group involves a (−1)FL transformation, and by a · b the T-duality invariant inner

products between two such charge vectors a and b. Then the degeneracy d(Qe, Qm) of a

class of 1/4 BPS dyonic states are given by

d(Qe, Qm) = − 1

29

∫

C
dρ̃dσ̃dṽ

1

Φ̃(ρ̃, σ̃, ṽ)
exp

[

−iπ(2ρ̃Q2
e + σ̃Q2

m/2 + 2ṽQe · Qm)
]

,

(1.1)

where Q2
e ≡ Qe ·Qe, Q2

m ≡ Qm ·Qm, Φ̃ is a function to be specified below, and C is a three

real dimensional subspace of the three complex dimensional space labelled by (ρ̃, σ̃, ṽ),

given by

Im ρ̃ = M1, Im σ̃ = M2, Im ṽ = M3,

0 ≤ Re ρ̃ ≤ 1, 0 ≤ Re σ̃ ≤ 2, 0 ≤ Re ṽ ≤ 1 , (1.2)

M1, M2 and M3 being fixed large positive numbers. The function Φ̃ is given by

Φ̃(ρ̃, σ̃, ṽ) = − 1

28
e2πi(ρ̃+ṽ)

1
∏

r=0

∏

k′∈zz+ r
2 ,l,j∈zz

k′,l≥0,j<0 for k′=l=0

(

1 − e2πi(σ̃k′+ρ̃l+ṽj)
)

P1
s=0(−1)slc(r,s)(4lk′−j2)

,

(1.3)

where the coefficients c(r,s)(4lk′ − j2) are given as follows. Let us denote by g̃ a transfor-

mation that changes the sign of all the coordinates of a four torus T 4, and consider a (4,4)

superconformal field theory (SCFT) with target space T 4. We now take an orbifold of this

theory by the ZZ2 group generated by g̃, and define

F (r,s)(τ, z) ≡ 1

2
TrRR;g̃r

(

g̃s(−1)FL+FRe2πiτL0e2πiJ z
)

, r, s = 0, 1 , (1.4)

where Tr denotes trace over all the Ramond-Ramond (RR) sector states twisted by g̃r in

this SCFT before we project on to g̃ invariant states. FL and FR denote the world-sheet

fermion numbers1 associated with left and right chiral fermions in this SCFT, and J /2 is

the generator of the U(1)L subgroup of the SU(2)L × SU(2)R R-symmetry group of this

1For the world-volume theory on the D-branes the world-volume fermion number coincides with the

space-time fermion number. For describing elementary string states we shall mostly use light-cone gauge

Green-Schwarz formalism where again the world-sheet fermion number coincides with the space-time fermion

number. Thus throughout this paper there will be no distinction between world-sheet and space-time

fermion numbers.
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conformal field theory. One finds that F (r,s)(τ, z) has expansion of the form

F (r,s)(τ, z) =
∑

b∈zz,n

c(r,s)(4n − b2)e2πinτ+2πibz . (1.5)

This defines the coefficients c(r,s)(u).

The explicit forms of F (r,s)(τ, z) are as follows

F (0,0)(τ, z) = 0

F (0,1)(τ, z) = 8
ϑ2(τ, z)2

ϑ2(τ, 0)2

F (1,0)(τ, z) = 8
ϑ4(τ, z)2

ϑ4(τ, 0)2

F (1,1)(τ, z) = 8
ϑ3(τ, z)2

ϑ3(τ, 0)2
. (1.6)

From this one can calculate the coefficients c(r,s)(u) explicitly.

As in the case of CHL models, the function Φ̃(ρ̃, σ̃, ṽ) turns out to be a modular form

of weight 2 under a certain subgroup of the Siegel modular group of genus two Riemann

surfaces. Using this fact one can prove that the degeneracy formula (1.1) is invariant under

the S-duality group Γ1(2) of the theory.

Using (1.1) one can also compute the statistical entropy of the dyon for large charges

following the general strategy outlined in [2, 6, 9] and compare it with the entropy of the

corresponding black hole. It turns out that up to order Q0 both the statistical entropy and

the black hole entropy are obtained by extremizing the function

π

2τ2
|Qe + τQm|2 − ln f̃(τ) − ln f̃(−τ̄) − 4 ln(2τ2) + constant + O(Q−2) , (1.7)

with respect to the real and imaginary parts of τ = τ1 + iτ2. Here

f̃(τ) = η(τ)16/η(2τ)8 . (1.8)

Thus we see that to this order the black hole entropy agrees with the statistical entropy.

The result is significant in light of the fact that the same four derivative corrections to the

effective action fail to reproduce the statistical entropy of elementary string states in this

theory, essentially due to the fact that these corrections vanish at the tree level.

These results can also be generalized to a freely acting ZZ3 orbifold of type II string

theory compactified on a six dimensional torus. For brevity we shall not give the results

here, but a summary of the results can be found in section 6.

The rest of the paper is organised as follows. In section 2 we describe the theory under

consideration in different duality frames, and also describe the dyon configuration that we

shall analyze in this paper. In section 3 we count the degeneracy of a class of 1/4 BPS

dyonic states with a given set of charges, and reproduce eq. (1.1). In section 4 we use the

techniques developed in [7] to show that Φ̃ transforms as a modular form under a subgroup

of Sp(2,ZZ). This in turn proves the S-duality invariance of (1.1). In section 5 we analyze
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the behaviour of the statistical entropy computed from (1.1) for large charges and show

that it agrees with the black hole entropy up to first non-leading order. Section 6 contains

a summary of the results for the ZZ3 orbifold theory.

Since most of the analysis in this paper is identical to that in [7, 9] we often skip the

details of the calculation and quote the final result. For details of the calculation the reader

should consult the original references.

2. The dyon configuration

In this section we shall describe the model under consideration and its various dual de-

scriptions which will be relevant for our analysis. The analysis is based on the connection

between four and five dimensional black holes discussed in [23, 3, 9].

1. We begin with type IIB string theory compactified on a six torus T 4 × S1 × S̃1, and

take a system containing Q5 D5-branes wrapped on T 4 ×S1, Q1 D1-branes wrapped

on S1, −n units of momentum along S1, J units of momentum along S̃1 and a

Kaluza-Klein monopole associated with the compact circle S̃1. For definiteness we

shall label S1 and S̃1 by coordinates with period 2π. Let us denote the coordinates

of T 4 by x6, x7, x8, x9, and the coordinates of S̃1, S1 by x4, x5. We then take an

orbifold of this system by a ZZ2 transformation generated by

g : (x4, x5, x6, x7, x8, x9) → (x4, x5 + π,−x6,−x7,−x8,−x9) . (2.1)

We shall denote by g̃ the part of g that acts on T 4, ı.e.

g̃ : (x4, x5, x6, x7, x8, x9) → (x4, x5,−x6,−x7,−x8,−x9) . (2.2)

We shall call this the first description of the system.

2. We now make an S-duality transformation on this system to get type IIB string theory

on T 4 ×S1 × S̃1/ZZ2 with Q5 NS5-branes on T 4 ×S1, Q1 units of fundamental string

winding charge along S1, −n units of momentum along S1, J units of momentum

along S̃1, and a Kaluza-Klein monopole associated with S̃1 compactification. Under

this duality the generators g and g̃ remain unchanged.

3. Next make an R → 1/R duality transformation along S̃1 to convert the theory into

type IIA string theory on T 4×S1×Ŝ1/ZZ2 with Q5 Kaluza-Klein monopoles associated

with Ŝ1 compactification, Q1 units of fundamental string winding charge along S1,

−n units of momentum along S1, J units of fundamental string winding charge along

Ŝ1, and a single NS5-brane wrapped on T 4×S1. Here Ŝ1 denotes the dual circle of S̃1.

Again the generators g and g̃ remain unchanged under this duality transformation.

4. Finally using the string-string self-duality described in [20] we can relate this to a

type IIA string theory on T̂ 4 × S1 × Ŝ1/ZZ′
2, where the generator of ZZ′

2 involves half

unit of shift along S1 together with a (−1)FL transformation where FL denotes the

contribution to the space-time fermion number from the left-moving sector of the
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string world-sheet. The action of this duality on various states is similar to that of

string-string duality relating type IIA string theory on K3 and heterotic string theory

on T 4. The final system consists of Q5 Kaluza-Klein monopoles associated with Ŝ1

compactification, Q1 units of NS5-brane charge along T̂ 4×S1, −n units of momentum

along S1, J units of NS5-brane charge along T̂ 4× Ŝ1, and a single fundamental string

wrapped on S1. We shall call this description the second description of the system.

Since the second description has only fundamental strings, NS 5-branes and Kaluza-

Klein monopoles, we shall use this description to identify the various charges as electric

or magnetic. If −~n and ~w denote the momentum and winding charges respectively along

S1×Ŝ1, and ~N and ~W denote the Kaluza-Klein monopole charges and H-monopole charges

(NS-5-branes transverse to the circle) along S1 × Ŝ1, then we can define the T-duality

invariant inner product

Q2
e = 2~n · ~w, Q2

m = 2 ~N · ~W, Qe · Qm = ~n · ~N + ~w · ~W . (2.3)

Thus before the ZZ2 modding we had 1
2 Q2

m = Q1Q5,
1
2Q2

e = n, and Qe.Qm = J . In order

to get a ZZ2 invariant configuration so that we can carry out the ZZ2 modding, we need

to put periodic boundary conditions on all the branes which extend along S1, and take 2

identical copies of all the branes transverse to S1 and place them at intervals of π along

S1. The latter set includes the five branes along T̂ 4 × Ŝ1; we need to take 2J five branes,

divide them into two sets and place the two sets separated by an interval of π along S1.

After orbifolding the direction along S1 can be regarded as a circle of radius 1/2, and per

unit period along S1 there will be J five branes transverse to S1. The natural unit of

momentum along S1 is now 2, and momentum −n along S1 can be regarded as −n/2 units

of momentum. The other charges have the same values as in the parent theory. Thus we

now have
1

2
Q2

e = n/2,
1

2
Q2

m = Q1 Q5, Qe · Qm = J . (2.4)

Before concluding this section we shall make a few remarks about the supersymme-

try and S-duality symmetry of the theory and also the spectrum of massless states in

the theory. Type II string theory compactified on torus has 32 supercharges, but the

ZZ2 orbifolding breaks half of these supersymmetries. In the first description half of the

supersymmetries from the left-moving sector of the world-sheet and half of the supersym-

metries from the right-moving sector of the world-sheet are broken. Thus this description

is analogous to type II string theory compactified on K3 × T 2. In the second description

all the supersymmetries from the left-moving sector of the world-sheet are broken and all

supersymmetries from the right-moving sector of the world-sheet are preserved. Thus this

situation is analogous to heterotic string theory on T 6. As in [9] the dyon system breaks

3/4 of the supersymmetry generators; hence these are 1/4 BPS states of the theory.

The S-duality symmetry of this theory in the second description may be analysed by

mapping it to the T-duality symmetry of the theory in the first description. It is essentially

the subgroup of the T-duality symmetry SL(2,ZZ) of T 2 that commutes with half unit of
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shift along S1, and is generated by the group of matrices

(

a b

c d

)

satisfying

ad − bc = 1, a, d ∈ 1 + 2ZZ, c ∈ 2ZZ, b ∈ ZZ . (2.5)

This defines the group Γ1(2) ≡ Γ0(2) [13].

The spectrum of massless states may be analyzed easily using the second description of

the theory. First of all since the theory has N = 4 supersymmetry, the low energy effective

field theory must be N = 4 supergravity coupled to a set of matter multiplets. Thus in

order to find the spectrum all we need to do is to find the number of matter multiplets. This

in turn is equal to the number of massless vector fields (the rank of the gauge group) minus

six, since there are six graviphotons. To count the number of massless vector fields we

note that since in the Neveu-Schwarz-Ramond (NSR) formulation the ZZ2 transformation

changes the sign of all the Ramond (R) sector states on the left, it projects out all the

massless states (including the gauge fields) originating in the RR sector. On the other

hand since it acts trivially on the massless NS-NS sector states, all the 12 gauge fields in

the NS-NS sector coming from the components of the metric and rank two anti-symmetric

tensor fields along the internal directions of the torus survive the projection. This gives a

rank 12 gauge group. Thus we have six matter multiplets.

3. Counting of states of the dyon

The description of the system given in the previous section makes it clear that the system

is very similar to the corresponding system in the ZZ2 CHL model analyzed in [9] with K3

replaced by T 4, and the transformation g̃ given by (2.2) rather than a ZZ2 involution in K3.

Thus the computation of the degeneracy proceeds in a manner identical to that in [9]. We

now outline the main steps in this computation.

As shown in [9] the final result for the degeneracy depends only on the combination

Q1Q5; hence we shall for simplicity consider the Q5 = 1 case.2 In the first description of the

system the quantum numbers n and J arise from three different sources: the excitations of

the Kaluza-Klein monopole which can carry certain amount of momentum −l′0 along S1,

the overall motion of the D1-D5 system in the background of the Kaluza-Klein monopole

which can carry certain amount of momentum −l0 along S1 and j0 along S̃1 and the motion

of the D1-branes in the plane of the D5-brane carrying total momentum −L along S1 and

J ′ along S̃1. Thus we have

l′0 + l0 + L = n, j0 + J ′ = J . (3.1)

Let h(Q1, n, J) denote the number of bosonic minus fermionic supermultiplets (in the sense

described in [9]) of the combined system carrying quantum numbers Q1, n, J and let

f(ρ̃, σ̃, ṽ) =
∑

Q1,n,J

h(Q1, n, J)e2πi(ρ̃n+σ̃Q1/2+ṽJ) , (3.2)

denote the partition function of the system. Then f(ρ̃, σ̃, ṽ) is obtained as a product of

2Unlike in [9] where wrapping a D5-brane on K3 shifted the Q1 charge by −Q5, a D5-brane wrapped

on T 4 does not cause any such shift.
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three separate partition functions:

f(ρ̃, σ̃, ṽ) =
1

64

∑

Q1,L,J ′

dD1(Q1, L, J ′)e2πi(σ̃Q1/2+ρ̃L+ṽJ ′)





∑

l0,j0

dCM (l0, j0)e
2πil0 ρ̃+2πij0ṽ









∑

l′0

dKK(l′0)e
2πil′0ρ̃



 , (3.3)

where dD1(Q1, L, J ′) is the degeneracy of Q1 D1-branes moving in the plane of the D5-brane

carrying momenta (−L, J ′) along (S1, S̃1), dCM (l0, j0) is the degeneracy associated with

the overall motion of the D1-D5 system in the background of the Kaluza-Klein monopole

carrying momenta (−l0, j0) along (S1, S̃1) and dKK(l′0) denotes the degeneracy associated

with the excitations of a Kaluza-Klein monopole carrying momentum −l′0 along S1. The

factor of 1/64 in (3.3) accounts for the fact that a single 1/4 BPS supermultiplet has 64

states.

We begin with the computation of dKK(l′0). Under the duality that relates the first

description to the second description, a Kaluza-Klein monopole in the first description

gets mapped to a twisted sector fundamental string in the second description, and the

transformation g̃ gets mapped to ĝ = (−1)FL . Let us consider a (4,4) superconformal field

theory describing type IIA string theory compactified on T 4 × S1 × Ŝ1 in the light-cone

gauge Green-Schwarz formalism. Following the procedure of [9] one finds that

∑

l′0

dKK(l′0)e
2πil′0ρ̃ = Tr′ĝ

(

(−1)FLe4πiρL′
0

)

, (3.4)

where Tr′ĝ denotes trace over states for which the right-moving oscillators are in their

ground state, and the left-moving oscillators are twisted by ĝ. We do not impose the re-

quirement of ĝ invariance on the states while taking the trace [9]. The factor of (−1)FL

inside the trace accounts for the fact that we want to count bosonic and fermionic exci-

tations in the left-moving sector of the world-sheet with weights 1 and −1 respectively.

This factor was not present in the corresponding expression in [9] since all the left-moving

world-sheet oscillators were bosonic. The Virasoro generator L′
0 includes the contribution

from all the left moving bosonic and fermionic oscillators but not from momenta or winding

charges which are set to some fixed values. Since in the Green-Schwarz formulation there

are 8 left-moving bosonic oscillators with periodic boundary condition and 8 left-moving

fermionic oscillators with anti-periodic boundary condition (due to twisting by ĝ under

which the fermions are odd) we get

∑

l′0

dKK(l′0)e
2πil′0ρ̃ = 16 e−2πiρ̃

∏∞
n=1(1 − e2πi(2n−1)ρ̃)8
∏∞

n=1(1 − e4πinρ̃)8
= 16

η(ρ̃)8

η(2ρ̃)16
. (3.5)

The factor of 16 comes from the fermionic zero mode quantization in the right-moving

sector. The overall factor of e−2πiρ̃ reflects the effect of the zero point energy.

Next we compute dCM (l0, j0). In this case besides the degrees of freedom associated

with the motion of the D1-D5 system transverse to the plane of the D5-brane as in [9],
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there is an additional set of degrees of freedom associated with the Wilson lines along T 4

on the D5-brane [24]. This gives rise to four additional bosonic fields together with their

fermionic superpartners living on S1. For the degeneracy associated with the dynamics

transverse to the plane of the D5-brane, not only the computational procedure but also

the results are identical to that in [9] for the ZZ2 orbifold case, and we get

∑

l0,j0

dtransverse(l0, j0)e
2πil0 ρ̃+2πij0ṽ = 4 e−2πiṽ (1 − e−2πiṽ)−2

∞
∏

n=1

{

(1 − e4πinρ̃)4 (1 − e4πinρ̃+2πiṽ)−2 (1 − e4πinρ̃−2πiṽ)−2
}

. (3.6)

On the other hand the bosonic fields associated with the Wilson line along T 4 and their

fermionic superpartners are odd under g̃, and hence have anti-periodic boundary condition

along S1. Together they describe a (4,4) superconformal field theory with SU(2)L×SU(2)R
R-symmetry, and the quantum number j0 may be identified with twice the eigenvalue of

the U(1)L generator of SU(2)L [25]. The bosons and the right-moving fermions are neutral

under SU(2)L and hence do not carry any j0 quantum number, but the left-moving fermions

are doublets under the SU(2)L R-symmetry group and hence carry j0 quantum numbers

±1.3 Thus we have

∑

l0,j0

dwilson(l0, j0)e
2πil0ρ̃+2πij0ṽ =

∞
∏

n=1

{

(1 − e2πi(2n−1)ρ̃)−4 (1 − e2πi(2n−1)ρ̃+2πiṽ)2

(1 − e2πi(2n−1)ρ̃−2πiṽ)2
}

. (3.7)

The partition function associated with dCM (l0, j0) is given by the product of these two

contributions:

∑

l0,j0

dCM (l0, j0)e
2πil0ρ̃+2πij0ṽ = 4 e−2πiṽ (1 − e−2πiṽ)−2

∞
∏

n=1

{

(1 − e4πinρ̃)4 (1 − e4πinρ̃+2πiṽ)−2 (1 − e4πinρ̃−2πiṽ)−2
}

∞
∏

n=1

{

(1 − e2πi(2n−1)ρ̃)−4 (1 − e2πi(2n−1)ρ̃+2πiṽ)2 (1 − e2πi(2n−1)ρ̃−2πiṽ)2
}

.

(3.8)

Finally we need to find dD1(Q1, L, J ′). Since the analysis is identical to the one given

in [26, 9], we shall only quote the result. We first define

F (r,s)(τ, z) ≡ 1

2
TrRR;g̃r

(

g̃s(−1)FL+FRe2πiτL0e2πiJ z
)

, r, s = 0, 1 , (3.9)

3Recall that the fermions which are superpartners of the bosonic fields representing transverse motion

of the D-brane have exactly opposite properties. The left-moving fermions are neutral under SU(2)L and

the right-moving fermions transform in the doublet representation of SU(2)L [9].
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where the trace is taken over all the RR sector states twisted by g̃r in a (4,4) superconformal

field theory with target space T 4/ZZ2, – with ZZ2 generated by g̃, — before we project on

to g̃ invariant states. FL and FR denote the world-sheet fermion numbers associated with

left and right chiral fermions, and J /2 is the generator of the U(1)L subgroup of the

SU(2)L × SU(2)R R-symmetry group of this conformal field theory. Explicit computation

gives

F (0,0)(τ, z) = 0

F (0,1)(τ, z) = 8
ϑ2(τ, z)2

ϑ2(τ, 0)2

F (1,0)(τ, z) = 8
ϑ4(τ, z)2

ϑ4(τ, 0)2

F (1,1)(τ, z) = 8
ϑ3(τ, z)2

ϑ3(τ, 0)2
. (3.10)

These can be rewritten as

F (r,s)(τ, z) = h
(r,s)
0 (τ)ϑ3(2τ, 2z) + h

(r,s)
1 (τ)ϑ2(2τ, 2z) (3.11)

where

h
(0,0)
0 (τ) = 0, h

(0,0)
1 (τ) = 0,

h
(0,1)
0 (τ) = 4

1

ϑ3(2τ, 0)
, h

(0,1)
1 (τ) = 4

1

ϑ2(2τ, 0)
,

h
(1,0)
0 (τ) = 8

ϑ3(2τ, 0)

ϑ4(τ, 0)2
, h

(1,0)
1 (τ) = −8

ϑ2(2τ, 0)

ϑ4(τ, 0)2
,

h
(1,1)
0 (τ) = 8

ϑ3(2τ, 0)

ϑ3(τ, 0)2
, h

(1,1)
1 (τ) = 8

ϑ2(2τ, 0)

ϑ3(τ, 0)2
. (3.12)

We now define the coefficients c(r,s)(u) through the expansions

h
(r,s)
0 (τ) =

∑

n

c(r,s)(4n)qn, h
(r,s)
1 (τ) =

∑

n

c(r,s)(4n)qn . (3.13)

From (3.12) we see that in the expansion of h
(r,s)
l , n ∈ ZZ− l

4 for r = 0 and n ∈ 1
2ZZ− l

4 for

r = 1. Thus for given (r, s) the c(r,s)(u) defined through the two equations in (3.13) have

non-overlapping set of arguments. Substituting (3.13) into (3.11) and using the Fourier

expansions of ϑ3(2τ, 2z), ϑ2(2τ, 2z) we get

F (r,s)(τ, z) =
∑

b∈zz,n

c(r,s)(4n − b2)e2πinτ+2πibz . (3.14)

Following the analysis of [9] one can show that

∑

Q1,L,J ′

dD1(Q1, L, J ′)e2πi(σ̃Q1/2+ρ̃L+ṽJ ′) =
∏

w,l,j∈zz
w>0,l≥0

(

1 − e2πi(σ̃w/2+ρ̃l+ṽj)
)−n(w,l,j)

, (3.15)
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where

n(w, l, j) =

1
∑

s=0

(−1)slc(r,s)(2lw − j2) , r = w mod 2 . (3.16)

It is now time to put the results together. Using the results

c(0,0)(0) = 0 , c(0,0)(−1) = 0 , c(0,1)(0) = 4 , c(0,1)(−1) = 2 , (3.17)

and eqs. (3.3)), ((3.5), (3.8) and (3.15) we get

f(ρ̃, σ̃, ṽ) = e−2πi(ρ̃+ṽ)
1

∏

r=0

∏

k′∈zz+ r
2 ,l,j∈zz

k′,l≥0,j<0 for k′=l=0

(

1 − e2πi(σ̃k′+ρ̃l+ṽj)
)−

P1
s=0(−1)sl c(r,s)(4lk′−j2)

.

(3.18)

Defining

Φ̃(ρ̃, σ̃, ṽ) = − 1

28
e2πi(ρ̃+ṽ)

1
∏

r=0

∏

k′∈zz+ r
2 ,l,j∈zz

k′,l≥0,j<0 for k′=l=0

(

1 − e2πi(σ̃k′+ρ̃l+ṽj)
)

P1
s=0(−1)slc(r,s)(4lk′−j2)

,

(3.19)

we can express (3.18) as

f(ρ̃, σ̃, ṽ) = − 1

28 Φ̃(ρ̃, σ̃, ṽ)
. (3.20)

Using (3.2) and identifying h(Q1, n, J) with the dyonic degeneracy d(Qe, Qm) with Q2
e = n,

Q2
m = 2Q1 and Qe · Qm = J , we get

d(Qe, Qm) = K

∫

C
dρ̃dσ̃dṽ

1

Φ̃(ρ̃, σ̃, ṽ)
exp

[

−iπ(2ρ̃Q2
e + σ̃Q2

m/2 + 2ṽQe · Qm)
]

,

(3.21)

where

K = − 1

29
, (3.22)

and C denotes the surface

Im ρ̃ = M1, Im σ̃ = M2, Im ṽ = M3,

0 ≤ Re ρ̃ ≤ 1, 0 ≤ Re σ̃ ≤ 2, 0 ≤ Re ṽ ≤ 1 , (3.23)

M1, M2, M3 being fixed large positive numbers.

4. Properties of Φ̃ from the threshold integral

In this section we shall derive various useful properties of Φ̃, e.g. its duality transformation

laws and locations of its zeroes by following the strategy described in [7, 9] for CHL models.

The main idea is to begin with an integral that is manifestly invariant under a subgroup

of the modular group Sp(2,ZZ) of genus two Riemann surface and then express this as a

sum of a holomorphic piece proportional to ln Φ̃, its complex conjugate and a piece that is

neither holomorphic nor anti-holomorphic but has simple transformation properties under

Sp(2,ZZ) duality transformation. This in turn would determine the modular transformation

laws of the holomorphic and the anti-holomorphic pieces separately.
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4.1 The threshold integral

We define as in [7]

Fm1,m2,n1,n2(τ, z) =

1
∑

s=0

(−1)m1 s F (r,s)(τ, z) for m1,m2, n2 ∈ ZZ, n1 ∈ ZZ + r
2 , r = 0, 1

≡
∑

b

Fm1,n1,m2,n2;b(τ) e2πibz (4.1)

and

I(ρ̃, σ̃, ṽ) =

∫

F

d2τ

τ2

∑

m1,m2,n2,b∈zz
n1∈

1
2zz

qp2
L/2−b2/4q̄p2

R/2Fm1,m2,n1,n2;b(τ) (4.2)

where F denotes the fundamental domain of SL(2,ZZ) in the upper half plane, F (r,s)(τ, z)

have been defined in (3.9), and

q = e2πiτ , (4.3)

1

2
p2

R =
1

4det ImΩ
| − m1ρ̃ + m2 + n1σ̃ + n2(σ̃ρ̃ − ṽ2) + bṽ|2,

1

2
p2

L =
1

2
p2

R + m1n1 + m2n2 +
1

4
b2 , (4.4)

Ω =

(

ρ̃ ṽ

ṽ σ̃

)

. (4.5)

Using (3.11) the integral in (4.2) can be written as

I(ρ̃, σ̃, ṽ) =

1
∑

l,r,s=0

Ir,s,l (4.6)

Ir,s,l =

∫

F

d2τ

τ2

∑

m1,m2,n2∈zz
n1∈zz+ r

2
,b∈2zz+l

qp2
L/2q̄p2

R/2(−1)m1sh
(r,s)
l (τ) . (4.7)

These integrals can be evaluated following the procedure of [27, 28, 7] by separately eval-

uating the contribution from the zero orbit, the degenerate orbits and the non-degenerate

orbits. The only difference in the result from that in [7] arises from the fact that the

coefficients c(r,s)(4n − b2) now have different values. The final result is given by:

I(ρ̃, σ̃, ṽ) = −2 ln

[

κ(det ImΩ)2
∣

∣

∣

∣

exp(2πi(ρ̃ + ṽ))

1
∏

r,s=0

∏

(l,b)∈zz,k′∈zz+ r
2

k′,l≥0,b<0 for k′=l=0

{

(1 − exp(2πi(k′σ̃ + lρ̃ + bṽ)))(−1)lsc(r,s)(4k′l−b2)
}

∣

∣

∣

∣

2]

= −2 ln
[

216κ(det ImΩ)2
]

− 2 ln Φ̃(ρ̃, σ̃, ṽ) − 2 ln ¯̃Φ(ρ̃, σ̃, ṽ) (4.8)
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where Φ̃ has been defined in (3.19) and

κ =

(

8π

3
√

3
e1−γE

)2

. (4.9)

In arriving at (4.8) we have used

c(0,0)(0) = 0, c(0,0)(−1) = 0, c(0,1)(0) = 4, c(0,1)(−1) = 2,

c(1,0)(0) = 8, c(1,0)(−1) = 0, c(1,1)(0) = 8, c(1,1)(−1) = 0. (4.10)

Another useful integral is

I ′(ρ̃, σ̃, ṽ) = I
(

ρ̃ − ṽ2

σ̃
,− 1

σ̃
,
ṽ

σ̃

)

. (4.11)

By manipulating the expression for I(ρ̃, σ̃, ṽ) given in (4.2) and the duality transformation

properties of p2
L and p2

R one can show that [7]

I ′(ρ̃, σ̃, ṽ) =

1
∑

l,r,s=0

I ′
r,s,l (4.12)

I ′
r,s,l =

∫

F

d2τ

τ2

∑

m1,n1,n2∈zz
m2∈zz+ r

2
,b∈2zz+l

qp2
L/2q̄p2

R/2(−1)n2sh
(r,s)
l (τ) . (4.13)

These integrals may also be analyzed following the procedure described in [7] and the result

is

I ′(ρ̃, σ̃, ṽ) = −2 ln
[

216κ(det ImΩ)2
]

− 2 ln Φ(ρ̃, σ̃, ṽ) − 2 ln Φ̄(ρ̃, σ̃, ṽ) , (4.14)

where

Φ(ρ, σ, v) = − exp(2πi(σ + ρ + v))
1

∏

r,s=0

∏

(k′,l,b)∈zz
k′,l≥0,b<0 for k′=l=0

{

1 − (−1)r exp(2πi(k′σ + lρ + bv)
}c(r,s)(4k′l−b2)

.

(4.15)

It follows from (4.8), (4.14) and the relation (4.11) between I and I ′ that4

Φ(ρ, σ, v) = σ−2 Φ̃

(

ρ − v2

σ
,− 1

σ
,
v

σ

)

, Φ̃(ρ̃, σ̃, ṽ) = σ̃−2 Φ

(

ρ̃ − ṽ2

σ̃
,− 1

σ̃
,
ṽ

σ̃

)

. (4.16)

We shall now use these relations to analyze various properties of Φ̃(ρ̃, σ̃, ṽ).

4This analysis does not determine the relative phase between Φ and Φ̃. This can be fixed by comparing

the v → 0 (or ṽ → 0) limit of the two sides of eq. (4.16).
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4.2 Duality transformation properties

Following the same line of argument as in [7] for the ZZ2 CHL model, the original integral

I(ρ̃, σ̃, ṽ) can be shown to be invariant under a transformation:

Ω → (AΩ + B)(CΩ + D)−1 , (4.17)

if the matrix

(

A B

C D

)

belongs to a subgroup G̃ of Sp(2,ZZ) defined in [6]. Using the

invariance of I under (4.17) and the relation (4.8) we see that Φ̃ is a modular form of

weight 2 under the subgroup G̃ of Sp(2,ZZ):

Φ̃
(

(AΩ + B)(CΩ + D)−1
)

= det(CΩ + D)2Φ̃(Ω),

(

A B

C D

)

∈ G̃ . (4.18)

Using this result we can now follow the procedure of [6] to establish the invariance of

d(Qe, Qm) under the duality transformation:
(

Qm/
√

2√
2Qe

)

→
(

a b

c d

)(

Qm/
√

2√
2Qe

)

(4.19)

with

(

a b

c d

)

∈ Γ1(2), ı.e.

ad − bc = 1, a, d ∈ 1 + 2ZZ, c ∈ 2ZZ, b ∈ ZZ . (4.20)

These transformation laws are somewhat different in appearance from the standard duality

transformation laws discussed e.g. in [6]. This is due to the fact that the degeneracy

formula (3.21) is related to the corresponding formula in [6] by the transformation Q2
e →

Q2
m/2, Q2

m → 2Q2
e. However eqs. (4.19), (4.20) can be reexpressed in the form:

(

Qe

Qm

)

→
(

d c/2

2b a

)(

Qe

Qm

)

, (4.21)

with

(

d c/2

2b a

)

∈ Γ1(2). This is the usual form of S-duality transformation in the second

description of the system.

4.3 Location of the zeroes of Φ̃

We can follow the procedure of [9] to identify the location of the zeroes of Φ̃ by examining

the location of the singularities in the integral I. As in [9] one finds that Φ̃(ρ̃, σ̃, ṽ) has

possible zeroes at

(

n2(σ̃ρ̃ − ṽ2) + bṽ + n1σ̃ − ρ̃m1 + m2

)

= 0

for m1,m2, n2 ∈ ZZ, n1 ∈ 1
2ZZ, b ∈ 2ZZ + 1, m1n1 + m2n2 +

b2

4
=

1

4
. (4.22)

The order of the zero is given by

1
∑

s=0

(−1)m1sc(r,s)(−1), r = 2n1 mod 1 . (4.23)
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Using (4.10) we see that (4.23) vanishes for r = 1. Thus in order to get a zero (or pole),

n1 must be an integer. Setting r = 0 in (4.23) and using (4.10) we see that the order of

the zero is now given by 2 × (−1)m1 . Thus Φ̃ has second order zeroes at

(

n2(σ̃ρ̃ − ṽ2) + bṽ + n1σ̃ − ρ̃m1 + m2

)

= 0

for m1 ∈ 2ZZ, m2, n2 ∈ ZZ, n1 ∈ ZZ, b ∈ 2ZZ + 1, m1n1 + m2n2 +
b2

4
=

1

4
,

(4.24)

and second order poles at

(

n2(σ̃ρ̃ − ṽ2) + bṽ + n1σ̃ − ρ̃m1 + m2

)

= 0

for m1 ∈ 2ZZ+1, m2, n2 ∈ ZZ, n1 ∈ ZZ, b ∈ 2ZZ + 1, m1n1 + m2n2 +
b2

4
=

1

4
.

(4.25)

We shall now determine the constant of proportionality for two particular cases, namely

near ṽ = 0 and near σ̃ρ̃ − ṽ2 + ṽ = 0. The ṽ → 0 behaviour of Φ̃ can be derived directly

from (3.19) and the relations

∑

b

c(r,s)(4n − b2) =

{

0 for (r, s) = (0, 0)

8 δn,0 for (r, s) 6= (0, 0)
, (4.26)

which follow from setting z = 0 in eqs. (3.10) and (3.14). This gives

Φ̃(ρ̃, σ̃, ṽ) ' π2

64
ṽ2 η(2ρ̃)16

η(ρ̃)8
η(σ̃/2)16

η(σ̃)8
. (4.27)

In order to find the behaviour of Φ̃ near σ̃ρ̃− ṽ2 + ṽ = 0 we first note from (4.15) that

for v → 0

Φ(ρ, σ, v) ' 4π2v2 η(2ρ)16

η(ρ)8
η(2σ)16

η(σ)8
+ O(v4) . (4.28)

Next we use the duality transformation property

Φ(ρ, σ + 2v + ρ, v + ρ) = Φ(ρ, σ, v) , (4.29)

which follows from the symmetry of I ′ under a relabelling of the indices b, ~m, ~n in eq. (4.13).

Eqs. (4.16) and (4.29) give

Φ̃(ρ̃, σ̃, ṽ) = σ̃−2 Φ

(

ρ̃ − ṽ2

σ̃
,
ρ̃σ̃ − (ṽ − 1)2

σ̃
,
σ̃ρ̃ − ṽ2 + ṽ

σ̃

)

. (4.30)

(4.28) now gives, for small ρ̃σ̃ − ṽ2 + ṽ,

Φ̃(ρ̃, σ̃, ṽ) = 4π2 (2v − ρ − σ)2 v2 f(ρ)f(σ) + O(v4) , (4.31)

where

f(ρ) = η(2ρ)16/η(ρ)8 , (4.32)

– 14 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
3

and

ρ =
ρ̃σ̃ − ṽ2

σ̃
, σ =

ρ̃σ̃ − (ṽ − 1)2

σ̃
, v =

ρ̃σ̃ − ṽ2 + ṽ

σ̃
, (4.33)

or equivalently,

ρ̃ =
v2 − ρσ

2v − ρ − σ
, σ̃ =

1

2v − ρ − σ
, ṽ =

v − ρ

2v − ρ − σ
. (4.34)

These relations will be useful in section 5 for evaluating the statistical entropy of the black

hole.

5. Statistical and black hole entropy functions

In this section we shall compute the statistical entropy function [9] of the dyons carrying

electric charge Qe and magnetic charge Qm. The value of this function at its extremum

gives the statistical entropy, — the logarithm of the degeneracy of states corresponding to

a given set of charges. We also compute the black hole entropy function [29, 30] whose

value at its extremum gives the Wald entropy of the black hole. We then compare the two

results.

5.1 Statistical entropy function

We begin with the formula (3.21) for the degeneracy of dyons:

d(Qe, Qm) = K

∫

C
dρ̃dσ̃dṽ

1

Φ̃(ρ̃, σ̃, ṽ)
exp

[

−iπ(2ρ̃Q2
e + σ̃Q2

m/2 + 2ṽQe · Qm)
]

. (5.1)

This formula is identical in form to eq. (3.29) of [9] with the substitution Q2
m → 2Q2

e,

Q2
e → Q2

m/2. Following [1, 9] one can show that the dominant contribution to this integral

comes from the residue at the pole at

σ̃ρ̃ − ṽ2 + ṽ = 0 . (5.2)

The behaviour of Φ̃ near this zero, given by (4.31), is identical to the corresponding relation

(4.17) in [9] with k → 2 and f (k)(ρ) → f(ρ). Thus following an analysis identical to that

in [9] we can conclude that for large charges the statistical entropy Sstat(Qe, Qm), defined

as the logarithm of the degeneracy d(Qe, Qm), is obtained by extremizing the statistical

entropy function

− Γ̃B(~τ ′) =
π

2τ ′
2

| 1√
2
Qm +

√
2 τ ′ Qe|2− ln f(τ ′)− ln f(−τ̄ ′)−4 ln(2τ ′

2)+constant+O(Q−2) .

(5.3)

with respect to the real and imaginary parts of τ ′. In terms of a new variable

τ =
1

2τ̄ ′
, (5.4)

we can express (5.3) as

− Γ̃B =
π

2τ2
|Qe + τQm|2 − ln f̃(τ) − ln f̃(−τ̄) − 4 ln(2τ2) + constant + O(Q−2) , (5.5)
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where

f̃(τ) = η(τ)16/η(2τ)8 . (5.6)

For large charges the first term on the right hand side of (5.5) gives the leading contribution

to the statistical entropy. This term is universal and coincides e.g. with the corresponding

term in the statistical entropy function for CHL models. The rest of the terms, giving

correction of order Q0 or lower to the entropy, depend on the specific theory being analyzed.

5.2 Black hole entropy function

As discussed at the end of section 2, the low energy effective field theory describing the

theory under consideration is N = 4 supergravity coupled to six matter multiplets. Since

the supergravity action is insensitive to the details of the theory except for the rank of

the gauge group, the Bekenstein-Hawking entropy of a BPS black hole carrying charges

(Qe, Qm), computed using the supergravity action, reproduces the leading contribution of

order Q2 to the statistical entropy as in the case of toroidally compactified heterotic string

theory or CHL models. However since we shall be interested in computing the entropy to

order Q0 we must also include four derivative corrections to the supergravity action. An

important set of four derivative terms relevant for computing the order Q0 corrections to

the entropy is the Gauss-Bonnet term. For definiteness we shall use the second description

of the theory to describe these corrections. On general grounds the Gauss-Bonnet term

can be shown to have the following structure5

∆L = φ(a, S)
{

RµνρσRµνρσ − 4RµνRµν + R2
}

, (5.7)

where Rµνρσ, Rµν and R are the Riemann tensor, Ricci tensor and scalar curvatures respec-

tively, S = e−2Φ where Φ is the dilaton field and a is the axion field obtained by dualizing

the rank two anti-symmetric tensor field in four dimensions. The function φ(a, S) has the

structure:

φ(a, S) = − 1

128π2
(K ln(2S) + g(a + iS) + g(a + iS)∗) (5.8)

where K is a constant representing the effect of holomorphic anomaly [31, 32], and g(τ) is a

holomorphic function of τ which will be determined shortly. Explicit result for φ(a, S) for

this model can be found in [33], but we shall describe an alternative method for determining

φ(a, S) following [34] which can be easily generalized to the case of ZZ3 orbifold to be

discussed in section 6. φ(a, S) is invariant under the S-duality group Γ1(2), which acts on

τ ≡ a + iS ≡ τ1 + iτ2 as

τ → aτ + b

cτ + d
, a, b, c, d ∈ ZZ, ad − bc = 1, c = 0 mod 2, a, d = 1 mod 2 . (5.9)

Thus gives

g

(

aτ + b

cτ + d

)

= g(τ) + K ln(cτ + d) , (5.10)

5There is also a term proportional to the imaginary part of the function g(a + iS) multiplying the

Pontryagin density. But this term does not play any role in the analysis of the entropy of spherically

symmetric black holes since its contribution to the black hole entropy function vanishes.
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and hence

g(τ) − 2K ln η(τ) (5.11)

is invariant under a modular transformation except for a constant shift originating from

the phases picked up by η(τ) under a modular transformation. Thus

∂τ (g(τ) − 2K ln η(τ)) (5.12)

must be a modular form of Γ1(2) of weight 2. There is a unique modular form with this

property [35], namely

∂τ (ln η(2τ) − ln η(τ)) . (5.13)

Thus (5.12) must be proportional to (5.13). The constant of proportionality may be deter-

mined as follows. Since toroidally compactified type II string theory has no Gauss-Bonnet

term at the tree level, such terms are absent even after taking the orbifold projection. This

shows that φ(a, S), and hence g(a + iS) cannot have a term growing linearly with S for

large S. Comparing the large S behaviour of (5.12) and (5.13) we now get

g(τ) − 2K ln η(τ) = −2K (ln η(2τ) − ln η(τ)) + constant , (5.14)

or equivalently

g(τ) = −2K (ln η(2τ) − 2 ln η(τ)) + constant . (5.15)

This gives

φ(a, S) = − K
128π2

(ln(2 τ2) − 2 (ln η(2τ) − 2 ln η(τ)) − 2 (ln η(−2τ̄ ) − 2 ln η(−τ̄ )))

+constant . (5.16)

Finally we turn to the determination of K. This is done following the procedure

described in [34] with K3 replaced by T 4. The net result is that K is the number of

harmonic p forms on T 4 invariant under the transformation g̃, weighted by (−1)p. Since

only the even forms are invariant under g̃, and there are altogether 8 even forms on T 4, we

get

K = 8 . (5.17)

This determines the structure of the Gauss-Bonnet term completely. The result agrees

with the result of explicit computation described in [33].

The effect of the term given in (5.7) on the computation of black hole entropy was

analyzed in detail in [30]. After elimination of all variables except the values of a and S

on the horizon, the black hole entropy function takes the form:

E =
π

2τ2
|Qe + τQm|2 + 64π2 φ(τ1, τ2)

=
π

2τ2
|Qe + τQm|2 − 4 ln(2τ2) + 8 (ln η(2τ) − 2 ln η(τ)) + 8 (ln η(−2τ̄ ) − 2 ln η(−τ̄))

+constant . (5.18)
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Extremization of this function with respect to τ1 and τ2 gives the black hole entropy.

Comparing (5.5) and (5.18) we see that the black hole entropy and the statistical entropy

agree to this order.6

Given that for this model the black hole entropy fails to agree with the statistical

entropy for elementary string states [21, 22], it is worth trying to understand the difference

between these two cases. First we note that if we take Q2
e À Q2

m, (Qe · Qm)2/Q2
m in the

expression (5.18) for the black hole entropy function, then extremization of the first term

requires τ2 to be large. In this limit the term growing linearly with τ2 in the rest of the

terms cancel. This does not happen for the corresponding expression ((4.41) in [9]) for the

black hole entropy function for the CHL models. Thus although the leading contribution

to the black hole entropy is the same in all N = 4 supersymmetric compactifications, the

correction to this leading term is smaller in the present model compared to the CHL models

by powers of Q2
m/Q2

e and (Qe ·Qm)2/Q2
eQ

2
m. This of course is a consequence of the absence

of tree level curvature squared corrections in type II string theory.

How does this difference come about in the formula for the statistical entropy? For

this we need to understand the origin of the corrections linear in τ in the statistical entropy

function. Let us for definiteness work in the second description of the model where purely

electrically charged states represent elementary string states. On physical grounds we

should expect that when the electric charge is large compared to the magnetic charge

the correction to the leading contribution to the statistical entropy will be dominated

by the growth in the degeneracy of elementary string states, ı.e. the contribution (3.5)

in the present model or its analog in the case of CHL models (eq. (3.2) of [9]). This

intuition can be put on a firmer ground by noting that if we remove this factor from the

dyon partition function then the modified statistical entropy, computed using this modified

partition function, does not contain any term growing linearly with τ , either in the present

model or in the CHL models. Thus the term in the entropy function growing linearly with

τ has its origin in the partition function of elementary string states, and the difference in

the behaviour of the statistical entropy function in the present model and the CHL models

can be attributed to a difference in behaviour of the elementary string partition function

in the two theories.

By examining carefully the analysis of [9] leading to the final expression for the sta-

tistical entropy function one can check that the large τ behaviour of the correction term

is controlled by the small ρ̃ behaviour of the partition function (3.5) of elementary string

states. In particular the absence of linear corrections to the statistical entropy function of

the present model is related to the absence of exponential divergence of (3.5) in the ρ̃ → 0

6We should remind the reader that the string theory effective action has other four derivative terms

besides the one given in (5.7) and hence regarding (5.18) as the complete contribution to the black hole

entropy function to this order is not completely justified. A somewhat different set of four derivative terms,

based on supersymmetrization of the curvature squared terms, give the same answer for the black hole

entropy [36, 37]. Thus it seems that the answer for the black hole entropy, obtained by extremizing (5.18),

is somewhat robust. Nevertheless it will be useful to determine the complete set of four derivative corrections

to the supergravity action and study their effect on the black hole entropy. An attempt towards this has

recently been made in [38].
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limit. In contrast the corresponding elementary string partition function for (say) the ZZ2

CHL model has the form [9]:

η(ρ̃)−8η(2ρ̃)−8 , (5.19)

and diverges exponentially as ρ̃ → 0. This difference in behaviour might seem a bit sur-

prising at the first sight since the small ρ̃ behaviour of the partition function controls

the growth of degeneracy for large charges and for both models the degeneracy grows ex-

ponentially. The difference however comes from the fact that (3.5) and (5.19) actually

represent an index where we multiply the degeneracy by (−1)FL , FL being the space-

time fermion number associated with left-moving world-sheet excitations. For the CHL

model all the left-moving excitations are bosonic and hence the degeneracy is equal to

this index. The exponential growth in the degeneracy causes an exponential divergence

in the partition function (5.19) as ρ̃ → 0. However for the present model, states with

even and odd momentum along S1 correspond to bosonic and fermionic states respec-

tively [21, 22], and the index is equal to the degeneracy up to a sign. The small ρ̃ be-

haviour of the ‘partition function’ (3.5) is controlled by the difference in the growth rate

between bosonic and fermionic excitations and the leading exponential term cancels be-

tween these set of states. As a result (3.5) has no exponential divergence in the ρ̃ → 0

limit.

To summarize the situation, we have seen that the absence/presence of linearly grow-

ing correction to the statistical entropy function in the present/CHL model can be at-

tributed to the fact that in the present model elementary string spectrum contains both

bosonic and fermionic excitations in the left-moving sector, whereas the CHL model has

only bosonic excitations in the left-moving sector. Nevertheless this by itself would not

provide a complete physical explanation of the difference in behaviour of the statistical

entropy functions in the two theories since the statistical entropy is computed for a fixed

charge, and the elementary string states with bosonic and fermionic left-moving excitations

carry different charges.7 We must recall however that the complete description of a state

of the dyon involves a tensor product of states from three different Hilbert spaces. Thus

for example a fermionic elementary string state carrying odd momentum along S1 com-

bined with an odd momentum state from another sector and a bosonic elementary string

state carrying even momentum along S1, combined with an even momentum state from

another sector, can give rise to states carrying the same charge but opposite statistics.

Their net contribution to the index will then be zero, causing a suppression in the statis-

tical entropy function. Such cancellations will not take place in the corresponding CHL

models.

This seems to be the physical explanation for why for dyonic states the linearly growing

corrections to the statistical entropy function are absent in the present model in agreement

with the black hole entropy, while for the statistical entropy of elementary string states

there are no such cancellations between bosonic and fermionic states.

7This in fact is the reason why, just as in CHL models, the statistical entropy of an elementary string

state still grows exponentially in this theory in disagreement with the black hole entropy.
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6. The ZZ3 orbifold example

In this section we shall analyze the dyon spectrum in another N = 4 supersymmetric

theory, obtained by taking a ZZ3 orbifold of type IIA string theory compactified on a six

torus T 4×S1× S̃1. The orbifold group involves a 2π/3 rotation along one two dimensional

plane in T 4, −2π/3 rotation along an orthogonal two dimensional plane in T 4 and 1/3

unit of shift along the circle S1. This of course requires that the ZZ3 transformation is a

symmetry of the original torus T 4, — this can be achieved for example by taking T 4 to

be a product of two two dimensional tori, each with a hexagonal symmetry. There is a

dual description of these models, also as orbifolds of type IIA string theory on a six torus

T̂ 4 ×S1 × Ŝ1, but now the orbifold group involves 1/3 unit of shift along S1 together with

a rotation by 4π/3 in a coordinate plane in T̂ 4 acting only on the left-moving world-sheet

fields [20]. As in the case of ZZ2 orbifold model, this theory also has N = 4 supersymmetry

in four dimensions. The gauge group now has rank 10 since (in the NSR formulation)

besides all the RR sector gauge fields, two of the gauge fields originating in the NS-NS

sector are also projected out in the second description. The S-duality group in the second

description is Γ1(3), consisting of matrices

(

a b

c d

)

satisfying

ad − bc = 1, a, d ∈ 1 + 3ZZ, c ∈ 3ZZ, b ∈ ZZ . (6.1)

The various parts of the analysis done for the ZZ2 orbifold model can be easily gener-

alized to the case of this ZZ3 orbifold model by following [7, 9]. For the sake of brevity we

shall not repeat the analysis here but only give the final results. Also in order to make the

comparison between the ZZ2 and ZZ3 models easier we shall state the results for ZZN model

which will be valid both for N = 2 and N = 3. Thus by setting N = 2 we can recover the

results of the previous sections.

First of all we note that in both models the rank r of the gauge group may be expressed

as

r = 2k + 8 , (6.2)

where

k + 2 =
12

N + 1
. (6.3)

The degeneracy formula takes the form

d(Qe, Qm) = K

∫

C
dρ̃dσ̃dṽ

1

Φ̃(ρ̃, σ̃, ṽ)
exp

[

−iπ(Nρ̃Q2
e + σ̃Q2

m/N + 2ṽQe · Qm)
]

,

(6.4)

where

K = −N−1−N(k+2)/(N−1) , (6.5)

C is the hypersurface

Im ρ̃ = M1, Im σ̃ = M2, Im ṽ = M3,

0 ≤ Re ρ̃ ≤ 1, 0 ≤ Re σ̃ ≤ N, 0 ≤ Re ṽ ≤ 1 , (6.6)
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and

Φ̃(ρ̃, σ̃, ṽ) = −N−N(k+2)/(N−1) e2πi(ρ̃+ṽ)

×
N−1
∏

r=0

∏

k′∈zz+ r
N

,l,j∈zz
k′,l≥0,j<0 for k′=l=0

(

1 − e2πi(σ̃k′+ρ̃l+ṽj)
)

PN−1
s=0 e−2πisl/N c(r,s)(4lk′−j2)

.

(6.7)

The coefficients c(r,s)(4lk′ − j2) are given as follows. Let us define

F (r,s)(τ, z) ≡ 1

N
TrRR;g̃r

(

g̃s(−1)FL+FRe2πiτL0e2πiJ z
)

, r, s = 0, 1, . . . N − 1 , (6.8)

where g̃ denotes the part of the orbifold action in the first description that acts as rotation

by angles (2π/N,−2π/N) on the two orthogonal planes of a four torus T 4, and the trace is

taken over all the RR sector states twisted by g̃r in the ZZN orbifold of the (4,4) supercon-

formal field theory with target space T 4, – with ZZN generated by g̃, — before we project

on to g̃ invariant states. FL and FR denote the world-sheet fermion numbers associated

with left and right chiral fermions in this SCFT, and J /2 is the generator of the U(1)L
subgroup of the SU(2)L × SU(2)R R-symmetry group of this conformal field theory. One

finds that F (r,s)(τ, z) has expansion of the form

F (r,s)(τ, z) =
∑

b∈zz,n∈zz/N

c(r,s)(4n − b2)e2πinτ+2πibz . (6.9)

This defines the coefficients c(r,s)(4n − b2).

The explicit forms of F (r,s)(τ, z) are as follows

F (0,s)(τ, z) =
16

N
sin4

(πs

N

) ϑ1

(

τ, z + s
N

)

ϑ1

(

τ,−z + s
N

)

ϑ1

(

τ, s
N

)2

F (r,s)(τ, z) =
4N

(N − 1)2
ϑ1

(

τ, z + s
N + r

N τ
)

ϑ1

(

τ,−z + s
N + r

N τ
)

ϑ1

(

τ, s
N + r

N τ
)2 ,

for 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N − 1 . (6.10)

A factor of 4 sin2
(

πs
N

)

in the expression for F (0,s)(τ, z) comes from the contribution due to

the right-moving fermionic zero modes. A factor of 4 N2

(N−1)2
in the expression for F (r,s) counts

the number of twisted sectors. Using standard identities involving Jacobi ϑ-functions we

may rewrite (6.10) as

F (r,s)(τ, z) = h
(r,s)
0 (τ)ϑ3(2τ, 2z) + h

(r,s)
1 (τ)ϑ2(2τ, 2z) , (6.11)

where

h
(0,s)
0 (τ) = −16

N
sin4 πs

N

1

ϑ1

(

τ, s
N

)2 ϑ2

(

2τ, 2
s

N

)

,

h
(0,s)
1 (τ) =

16

N
sin4 πs

N

1

ϑ1

(

τ, s
N

)2 ϑ3

(

2τ, 2
s

N

)

,
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h
(r,s)
0 (τ) = − 4N

(N − 1)2
1

ϑ1

(

τ, 1
N (s + rτ)

)2 ϑ2

(

2τ,
2

N
(s + rτ)

)

,

h
(r,s)
1 (τ) =

4N

(N − 1)2
1

ϑ1

(

τ, 1
N (s + rτ)

)2 ϑ3

(

2τ,
2

N
(s + rτ)

)

,

0 ≤ s ≤ (N − 1), 1 ≤ r ≤ (N − 1) . (6.12)

The coefficients c(r,s)(u) may now be defined through the expansion

h
(r,s)
l (τ) =

∑

n∈ 1
N

zz− l
4

c(r,s)(4n)e2πinτ . (6.13)

From (6.13) one can calculate the coefficients c(r,s)(u) explicitly.8

Generalizing the analysis of section 4 one can show that the function Φ̃(ρ̃, σ̃, ṽ) trans-

forms as a modular form of weight k under a certain subgroup of the Siegel modular group

of genus two Riemann surfaces, with k given by (6.3). This subgroup is the same one that

appears in the analysis of [6, 7] for ZZN CHL model. Using this fact one can prove that the

degeneracy formula (6.4) is invariant under the S-duality group Γ1(N) of the theory.

Analysis of the behaviour of the statistical entropy for large charges shows that this is

given by extremizing a statistical entropy function

π

2τ2
|Qe + τQm|2 − ln f̃k(τ) − ln f̃k(−τ̄) − (k + 2) ln(2τ2) + constant + O(Q−2) , (6.15)

with respect to the real and imaginary parts of τ = τ1 + iτ2. Here

f̃k(τ) = η(τ)2N(k+2)/(N−1)η(Nτ)−2(k+2)/(N−1) . (6.16)

In order to compute the black hole entropy we need to determine the function φ(a, S)

introduced in (5.7). This can be done by generalizing the analysis of section 5.2; all that

changes is that (5.13) now takes the form ∂τ (ln η(Nτ) − ln η(τ)) and K is given by 2k + 4.

The result is

φ(a, S) = −k + 2

64π2

(

ln(2 τ2) −
2

N − 1
(ln η(Nτ) − N ln η(τ))

− 2

N − 1
(ln η(−Nτ̄) − N ln η(−τ̄))

)

+ constant (6.17)

Using this the black hole entropy function becomes

π

2τ2
|Qe + τQm|2 − ln f̃k(τ) − ln f̃k(−τ̄) − (k + 2) ln(2τ2) + constant . (6.18)

Thus again we see that the black hole entropy and the statistical entropy match to this

order.

8Incidentally, the coefficients c(r,s)(u) are related to the corresponding coefficients for the ZZN CHL model

(which we shall denote by c
(r,s)
chl (u)) via the relations

c
(r,s)(u) =



0 for (r, s) = (0, 0)
N

N−1
c
(r,s)
chl (u) for (r, s) 6= (0, 0) .

(6.14)
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Finally, to complete the comparison with the corresponding analysis for the CHL

orbifold models, we note that it is possible to find a series formula for the modular form Φ̃

and its closely related cousin Φ defined through

Φ̃(ρ̃, σ̃, ṽ) = −(−iσ̃)−k Φ

(

ρ̃ − ṽ2

σ̃
,− 1

σ̃
,
ṽ

σ̃

)

, (6.19)

by repeating the analysis of [6]. This is done by replacing the cusp form f (k)(τ) used in [6]

by the modular form

fk(τ) = η(Nτ)2N(k+2)/(N−1)η(τ)−2(k+2)/(N−1) (6.20)

of Γ1(N) of weight (k + 2). Both for N = 2 and N = 3, fk(τ) vanishes as q = e2πiτ at the

cusp at τ → i∞. However using the modular transformation properties of η(τ) it is easy

to see that τ−k−2fk(−1/τ) goes to a constant as τ → i∞. Thus fk(τ) is not a cusp form of

Γ1(N). Nevertheless we can proceed as in [6] to construct (meromorphic) modular forms

Φ and Φ̃ of weight k of appropriate subgroups of Sp(2,ZZ). For example the modular form

Φ is given by a formula analogous to eq. (1.6) of [6]

Φ(ρ, σ, v) =
∑

n,m,r∈zz
n,m≥1, r2<4mn

a(n,m, r) e2πi(nρ+mσ+rv) , (6.21)

where,

a(n,m, r) =
∑

α∈zz;α>0
α|(n,m,r), g.c.d.(α,N)=1

χ(α)αk−1 C

(

4mn − r2

α2

)

, (6.22)

χ(α) = 1 for N = 2

=

{

1 for α = 1 mod 3

−1 for α = 2 mod 3
for N = 3 . (6.23)

The coefficients C(m) are obtained from the modular form fk(τ) as follows. We first define

the coefficients fk,n as

fk(τ)η(τ)−6 =
∑

n≥1

fk,ne2πiτ(n− 1
4
) , (6.24)

and then define C(m) as

C(m) = (−1)m
∑

s,n∈zz
n≥1

fk,nδ4n+s2−1,m . (6.25)

Eq. (6.21) gives a series expansion for Φ. A similar series expansion for Φ̃ may be found

by following the analysis of [6] (see eq. (C.37) of this paper) but since the formulæ are

considerably more complicated we shall not describe it here.
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